top of page

Les bactéries qui dégradent le Titanic révélées

Les micro-organismes Halomonas sont capables de survivre à des environnements salés très hostiles. Pour cela ils accumulent la molécule ectoïne afin de compenser les fluctuations des concentrations externes de sel. Des expériences de diffusion de neutrons ont permis d'expliquer comment l'ectoïne permet à ces bactéries de survivre : elle agit, à l’intérieur des bactéries, en maintenant les propriétés dynamiques de l'eau, essentielles à la vie.

 

Les micro-organismes représentent la forme de vie la plus répandue sur Terre, et la compréhension de la façon dont ils se comportent est d'une importance capitale pour notre propre survie et notre bien-être. La vie microbienne dispose d'une étonnante souplesse d'adaptation aux environnements extrêmes - pouvant survivre par exemple dans des conditions extrêmement chaudes ou froides, acides ou basiques, salées comme dans la mer Morte ou sous haute pression comme dans les grandes profondeurs océaniques - conditions qui serait préjudiciables à des organismes complexes. Ces organismes sont appelés extrêmophiles. Parmi eux les bactéries isolées à partir de marais salants ou de milieux marins comprennent une variété d'espèces intéressantes à potentiel biotechnologique élevé, telle que la bactérie Halomonas titanicae, récemment découverte dans la coque du paquebot RMS Titanic. Il a été estimé que l'action de H. titanicae produit une rouille qui pourrait entraîner la détérioration totale du Titanic vers 2030. De même, cette bactérie a été identifiée comme un danger potentiel pour les plates-formes pétrolières et autres objets métalliques fabriqués par l'homme et situés en mer profonde. Mais cette faculté de produire de la rouille pourrait également être mise à profit pour la biorestauration ou la gestion des déchets, par exemple pour accélérer la décomposition des épaves qui jonchent le fond des océans.


Les expériences se sont focalisées sur l'interaction de l'ectoïne avec de l'eau, des protéines et des membranes. Les neutrons, utilisés en combinaison avec des méthodes de marquage isotopique, ont montré comment l'ectoïne agit en laissant intacte la ‘coquille’ d'eau à la surface des protéines et membranes, ce qui est essentiel à leur activité biologique. Les molécules de H2O dans l'eau liquide interagissent les unes avec les autres à travers un réseau fluide très dynamique de liaisons hydrogène entre les atomes d'oxygène et d'hydrogène de molécules adjacentes. La présence d'autres substances dans l'eau peut entraver cette organisation. En fait, l'ectoïne, plutôt que d'entraver, améliore les propriétés dynamiques remarquables des liaisons hydrogène dans l'eau - or ces propriétés sont essentielles pour assurer la capacité de solvant de l'eau, et vitales pour la bonne organisation, la stabilisation et la fonction des protéines, des lipides, des membranes, de l'ARN et de l'ADN.


Ainsi que l’explique le Dr Joe Zaccaï, scientifique émérite du CNRS travaillant à l'ILL :  « On sait que la recherche de la vie sur Mars, et ailleurs dans l'univers, est guidée par la recherche de l'eau liquide, essentielle à toute forme de vie. Ses propriétés remarquables sont basées sur les réseaux hydrogène dynamiques qui jouent un rôle vital dans le repliement et les interactions macromoléculaires, qui sont à la base des fonctions biologiques des protéines. Les résultats de cette étude illustrent comment l'osmolyte, derrière la réponse halotolérance dans des microorganismes, induit des effets compensateurs sur les liaisons hydrogène dans le respect des propriétés biologiques essentielles. Les neutrons fournissent l'outil idéal pour étudier la structure et la dynamique de l'eau et des molécules biologiques de par leurs avantages uniques : entre autres, un pouvoir de pénétration élevé sans dégâts d'irradiation pour l'échantillon et la possibilité d'étiquetage d'une structure en remplaçant l'hydrogène par son isotope au deutérium. Chacun des instruments utilisés dans l'étude a agi comme un «microscope géant» de grossissement différent pour nous permettre de ‘voir’ les détails, depuis la formation cruciale des liaisons hydrogène au niveau atomique jusqu'aux grandes structures de protéines et de membranes. Bien que beaucoup d'investigations spectroscopiques et thermodynamiques aient déjà été faites par le passé sur l'ectoïne, nous sommes fiers de présenter, grâce à l'utilisation des neutrons, la caractérisation expérimentale directe des structures ectoïne-eau-protéine et ectoïne-eau-membrane pour expliquer le mode d'action de cette molécule, dont l’intérêt et l’utilité sont remarquables ».

bottom of page